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ABSTRACT: Seismic Inversion methods have been routinely used for estimating attributes like P-impedance, S-
impedance, density, ratio of P-wave and S-wave velocity and elastic impedances from seismic and well log data. 
These attributes help to understand lithology and fluid contents in the subsurface. The objective of this research is to 
use several standard seismic post-stack inversion methods for reservoir characterization and compare their results. 
Model-based (MBI), Colored (CI), Sparse-spike (SSI), and Band-limited (BLI) inversions are applied to the post-stack 
seismic data from the Blackfoot field, Alberta, Canada. In each case the data is inverted into P-impedance and density 
volume. The final stacked section shows high-resolution images within the time-depth ranges of 300 to 1300ms. All 
inversions show mutually consistent results with low-impedances within the target hydrocarbon sand within the 
channel. All post-stack inversion methods produces accurate and reliable results and unequivocally confirm the 
presence of reservoir in the channel area at 1060-1065ms time. Model based inversion methods shows higher 
correlation coefficient (0.99) and least RMS Error (778 m/s*g/cc) and hence better for Blackfoot seismic data. 

Geostatistical methods-Probabilistic neural network is also employed to estimate the petrophysical (porosity) variations 
within the sand channel (reservoir) of the Blackfoot field. The Correlation coefficients between the predicted and 
measured porosities following that the probabilistic neural network show that Sparse spike Inversion when used as an 
external attribute, is more accurate and produces high-resolution image compared to that estimated with the use of 
model based and Colored Inversion as an attribute. From the estimates, the predicted logs show correlation of 0.81, 
0.84 and 0.86 using neural network algorithm and MBI, CI and LPSSI as external attribute, respectively. Of the four 
post stack seismic inversion methods used here the probabilistic neural-network method with sparse spike inversion 
provides a higher correlation coefficient than that estimated for other methods. 

Keywords: Model-based inversion, Colored Inversion, Sparse-spike Inversion, Band-limited Impedance inversion, 
Acoustic Impedance, Elastic Impedance, Seismic Processing etc. 

——————————      —————————— 
 

1 INTRODUCTION 

Seismic inversion is a procedure that helps extract 
underlying models of the physical characteristics of rocks 
and fluids from seismic and well-log data. In the absence of 
well data, the properties can also be inferred from the 
inversion of seismic data alone [10]. In oil and gas industry, 
seismic inversion techniques have been widely used as a 
tool to locate hydrocarbon-bearing strata in the subsurface 
[19], [14]. 

The physical parameters that are of interest to a modeler 
performing inversion are: Impedance (Z), P-wave (VP) and 
S-wave (VS) velocity and density. Lame parameters which 
are sensitive towards fluid and saturation in rocks [3] can 

be derived from inverted models of impedances. The 
petrophysical parameters like porosity, sand/shale ratio 
and gas saturation can be estimated with the help of 
inverted volumes [3]. 

 The seismic inversion techniques can be divided into two 
broad categories: Pre-stack and Post-stack inversion. The 
first approach in the seismic inversion is the most 
commonly used where the effect of the wavelet is removed 
from the seismic data and a high-resolution image of the 
subsurface is produced [16]. The second approach in 
seismic inversion relies on model building from well log, 
seismic and geological data [4]. This also generates a high-
resolution image of the subsurface from which reservoir 
properties are calculated. A reliable estimate of the 
reservoir properties is critical in decision-making process 
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during production phase[21]. This study focuses only post-
stack seismic inversion methods. 

Further, Geostatistical method is used for better estimate of 
reservoir properties. Geostatistical methods are routinely 
followed to predict various geophysical parameters from 
seismic and log data. These methods use colored inversion, 
model based inversion and sparse spike derived 
impedances as external attributes and seismic and well log 
data as internal attributes for the geostatistical analysis [5].  
The inversion methods are implemented on the post-stack 
seismic data. Figure 1 shows flowchart of seismic inversion 
methods. 

 
Figure 1: Flow chart of inversion methods used in this 
study. 

Some of the advantages of post-stack inversion methods are 
mentioned below: 

1. The acoustic impedance is a layer property; hence 
stratigraphic interpretation is easier on impedance 
data than seismic data. 

2. The reduction of wavelet effects, side lobes and tuning 
enhances the resolution of subsurface layers. 

3. The Acoustic impedance can be directly computed 
and compared to well log measurements that serve as 
a link to reservoir properties. 

4. Porosity can be related to the acoustic impedance. 
Using geostatistical methods these impedance volume 
can be transformed to the porosity volume within the 
reservoir. 

5. The Acoustic impedance can be utilized to locate 
individual reservoir regions. 

2 THE STUDY AREA: BLACKFOOT FIELD, 
CANADA 

The Blackfoot field is located south-east of Strathmore, 
Alberta, Canada. Pan Canadian Petroleum and the 
CREWES (the Consortium for Research in Elastic-Wave 
Exploration Seismology) carried out the initial experiments 
on the data. Filtering and deconvolution was the initial 
experiments performed on the data [6]. The dataset 
contains 708 shots into a fixed recording spread of 690 
channels. The fold is 140 at the center of the spread [16]. 

 
Figure 2: Study area (Blackfoot, Field) shown by red 
rectangle. 

The data was recorded in two overlapping patches: the first 
patch targeted the clastic Glauconitic channel, and the 
second one went deeper to study the reef-prone Beaver hill 
lake carbonates [13]. This paper uses the data from the first 
patch, which focused on the clastic Glauconitic channel. 
The details of the processing steps used for the vertical and 
horizontal component data can be found in [24]. In this 
study, the conventional (vertical-component) 3D seismic 
data and thirteen well-log datasets are used for analysis of 
post stack seismic inversion methods. 

3 METHADOLOGY 
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In the following sections, post stack seismic inversion 
named, model-based, colored, sparse-spike and band-
limited impedance inversion techniques are describebriefly. 
Geostatistical method is briefly described in the last section 
of methodology. 

3.1 Model-Based Inversion (MBI) 

Model Based Inversion is based on the convolutional theory 
which states that the seismic trace can be generated from 
the convolution of wavelet with the Earth's reflectivity and 
addition of noise [15]. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑊𝑊𝑆𝑆𝑊𝑊𝑆𝑆𝑊𝑊𝑆𝑆𝑆𝑆 ∗ 𝑅𝑅𝑆𝑆𝑅𝑅𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑊𝑊𝑆𝑆𝑆𝑆𝑅𝑅 +  𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 

If the noise in the data is uncorrelated with the seismic 
signal, the trace can be solved for the earth reflectivity 
function. This is a non-linear equation which can be solved 
iteratively as follows [12]: 

𝑍𝑍 = 𝑉𝑉 ∗ 𝜌𝜌 

𝑆𝑆𝑆𝑆 =
𝑍𝑍𝑆𝑆+1 − 𝑍𝑍𝑆𝑆
𝑍𝑍𝑆𝑆+1 − 𝑍𝑍𝑆𝑆

 

 

𝐴𝐴𝐴𝐴𝑁𝑁 = 𝐴𝐴𝐴𝐴1exp��𝑆𝑆𝑆𝑆

𝑛𝑛

𝑆𝑆=1

� 

These equations are used in practice for recursive inversion 
with the aim of transforming reflectivity function into 
acoustic impedance [1]. AI1 is the acoustic impedance of the 
first (top) layer and AIN is the acoustic impedance for the 
Nth layer. ri is the reflection coefficient of the ith layer. This 
equation is valid for most of the practical cases where 
rj<0.3[1]. 

The acoustic impedance model of low frequency is obtained 
by estimating these values over the entire seismic section 
using kriging interpolation techniques at the wells. 
Generally, acoustic impedance are not recorded during the 
acquisition of well log data. These parameters can be 
estimated directly from the sonic and density log.  

The work flow of model based inversion technique is as 
follows [7]: 

1. Calculate the acoustic impedance at well locations 
using the well log data. 

2. Pick horizons in the seismic section to control the 
interpolation and to provide structural information 
for model between the wells in the area. 

3. Use interpolation along the interpreted seismic 
horizons and between the well locations to obtain 
the initial acoustic impedance model. 

4. Block the initial impedance using some selected 
block size.  

5. Extract statistical wavelet from the seismic section. 
6. Convolve the wavelet with the Earth Reflectivity to 

obtain synthetic seismic trace. This synthetic trace 
is different from the observed seismic trace.  

7. The Least Squares optimization is performed for 
minimizing the difference between the real and the 
modeled reflectivity section. This is achieved by 
analyzing the misfit between the synthetic trace 
and the real trace and modifying the block size and 
the amplitude to reduce the error. 

8. Repeat step 7 until the lowest misfit between the 
real seismic and the synthetic trace is achieved [17].   

3.2 Colored Inversion 

The colored inversion technique is a process where the 
spectra of the acoustic impedance derived from log data are 
used to compute the spectrum of the operator. The phase of 
this operator is -900 which allows its integration with the 
reflectivity series to generate the impedances[11].  The 
operator is derived in the following steps: First, the acoustic 
impedance is calculated and plotted against frequency for 
all wells in the area (Figure 3). A regression line is fit to the 
amplitude spectrum of the acoustic impedance to represent 
the impedance spectrum in the subsurface in the log-log 
scale. Second, the seismic spectrum is calculated from the 
seismic traces near the wells (Figure 4). These two spectra 
are used to calculate the operator spectrum which 
transforms the seismic spectrum into the average 
impedance spectrum. Third, the final spectrum is combined 
with a -900 phase shift to create the desired operator in time 
domain (Figure 5). The operator in frequency domain can 
be represented as shown in Figure (6). Colored inversion is 
fast and suitable for application to 3-D datasets [20]. 

 
Figure 3:AI from all wells (blue), one selected well (pink) 
and frequency on log-log scale. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016                                                                 1094 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

Figure 4:Seismic spectra near the wells (blue). Red line 
corresponds to the 𝑅𝑅−𝜃𝜃AI spectrum derived in figure 2. The 
operator spectrum (black) is the ratio of these two spectra. 

 
Figure 5:Time response of operator. 

 
Figure 6:Frequency spectrum of the operator. 

3.3 Sparse-Spike Inversion 

There are two types of sparse spike inversion techniques 
used to invert seismic section into impedance. The first one 
is Linear programming sparse spike and second one is 
Maximum likelihood sparse spike inversion techniques. 
These methods are described briefly in the following two 
subsections.  

 

I. Linear Programming 

This algorithm first extracts an estimate of the reflectivity, 
using programming technique that uses frequency domain 
constraints to recover the high and frequencies of the 
seismic spectrum. Then the reflectivity is integrated under 
the initial model. This creates a sparse reflectivity that 
produces the best match between derived synthetic and the 
seismic trace, subject to the constraint that the number of s 
be a minimum. 

It is assumed that the wavelet in the seismic data is known 
and, in fact, is the current wavelet. This method attempts to 
recover an impedance model with sparse reflectivity by 
minimum error between the modeled trace and the seismic 
trace. The L1 norm of the reflection is also minimized, 
which results in an earth model with the number of layers. 

II. Maximum Likelihood 

This algorithm uses the model to perturb a reflectivity 
series from the seismic data. It is assumed that the wavelet 
in the seismic data is known and the current wavelet. For 
each trace, a sparse reflectivity sequence is estimated by 
add reflection coefficients one by one until an optimal set 
has been found. The broadband reflectivity then modified 
gradually, until the resulting synthetic trace matches the 
real trace with tolerance level. We can control how far the 
algorithm may move from the initial guess model to match 
the real data.  

3.4 Band-limited Impedance Inversion 

Band-limited impedance inversion (BLI) transforms post 
stack seismic data into impedance, density and P-wave 
velocity. The band limited impedance method begins with 
specifying the relationship between the seismic trace and 
seismic impedance [7]. Thus, define the normal incidence 
reflection coefficient as: 

𝑆𝑆𝑆𝑆 =
𝑍𝑍𝑆𝑆+1 − 𝑍𝑍𝑆𝑆
𝑍𝑍𝑆𝑆+1 − 𝑍𝑍𝑆𝑆

 

Where 𝑍𝑍𝑆𝑆  is seismic impedance of jth layer and 𝑆𝑆𝑆𝑆  is seismic 
reflectivity of jth and (j+1)th interface.Solve above equation 
for impedance (j+1)th layer 

𝑍𝑍𝑗𝑗+1 = 𝑍𝑍𝑗𝑗 �1 +
2𝑆𝑆𝑗𝑗

1 − 𝑆𝑆𝑗𝑗
� = 𝑍𝑍𝑗𝑗 �

1 + 𝑆𝑆𝑗𝑗
1 − 𝑆𝑆𝑗𝑗

� 

Impedance of nth layer if we know impedance of 1st layer is: 

𝑍𝑍𝑛𝑛 = 𝑍𝑍1 �
1 + 𝑆𝑆1

1 − 1
� �

1 + 𝑆𝑆2

1 − 𝑆𝑆2
�… … �

1 + 𝑆𝑆𝑛𝑛−1

1 − 𝑆𝑆𝑛𝑛−1
� 

The acoustic impedance for the first layer needs to be 
estimated from a continuous layer above the target area 
[18]. In this method, the impedance for the jth layer can thus 
be calculated as follows: 

𝑍𝑍𝑛𝑛+1 = 𝑍𝑍1 ��
1 + 𝑆𝑆𝑘𝑘
1 − 𝑆𝑆𝑘𝑘

�
𝑗𝑗

𝑘𝑘=1

 

Divide above equation (4) by impedance of 1st layer that is 
Z1 and take the logarithm on both side, 

ln�
𝑍𝑍𝑗𝑗+1

𝑍𝑍𝑗𝑗
� = � ln �

1 + 𝑆𝑆𝑘𝑘
1 − 𝑆𝑆𝑘𝑘

� ≈ 2� rk

j

k=1


𝑗𝑗

𝑘𝑘=1

 

The last step follows from an approximation for ln which is 
valid only for small r. Now on solving equation (5) for Zj+1 

we have: 
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𝑍𝑍𝑗𝑗+1 = 𝑍𝑍1exp�2� rk

j

k=1

� 

Model the seismic trace as scaled reectivity: 𝑆𝑆𝐾𝐾 = 2rk
𝛾𝛾

, then 

above equation becomes: 

𝑍𝑍𝑗𝑗+1 = 𝑍𝑍1exp�𝛾𝛾�𝑆𝑆𝐾𝐾

j

k=1

� 

The above equation thus integrates the seismic trace and 
then exponentiates the result to provide an impedance trace 
[25], [18]. 

3.5 Geostatistical Methods 

The Geostatistical method use sample points taken at 
different locations and interpolates in the seismic section 
where log data are not available. These sample points are 
measurements of petrophysical parameters in the boreholes 
[8]. The geostatistics derives a surface using the values from 
the measured locations to estimate datapoints for each 
location in between the data points. 

Two groups of interpolation techniques are provided by 
Geostatistics: deterministic and geostatistical [23]. 
Mathematical function is uses by the Deterministic 
techniques for interpolation whereas Geostatistics used 
both statistical and mathematical methods [9]. 

Geostatistical method is routinely followed to predict 
various geophysical parameters from seismic and log data. 
Here we utilize Probabilistic Neural Network to compute 
porosity volume from seismic data [5]. The procedures 
followed for the Geostatistical analysis of the data are: 

1. The spatial continuity of the well log data is 
quantified using variograms. 

2. A statistical relationship is derived between the log 
and seismic data at all well locations using cross-
validation plots. The Multivariate Regression is linear 
while the Probabilistic Neural Network displays non-
linear relationship. 

3. These linear and non-linear relationships are then 
used to estimate the porosity volume at all locations of 
the seismic volume. 

4. The predicted porosity is evaluated for its reliability. 

The result is validated by hiding the wells and predicting 
the porosity at the same well location using the data from 
other wells in that area [2]. In this study Probabilistic neural 

Network is used to transform impedance volume into 
Porosity volume.  

4 RESULTS 

4.1 Seismic Inversions 

Post-stack seismic inversion operates on NMO-corrected 
and stacked CMP seismic data. Wavelet extraction is the 
first step of this inversion. Wavelet is extracted using all 
thirteen wells available in the study area. 

After extracting wavelet,well-log to seismic correlation is 
the next step which performed for each well individually. 
The process of correlation is applied as follows: 

1. A synthetic trace is generated using well log data and 
compared it to the seismic trace nearest to the well 
location; 

2. Time stretching and squeezing is applied to the data 
to align the seismic and well-log reflectors; 

3. Correlation coefficient and RMS Error are measured 
between the seismic and adjusted well-log synthetic 
traces. Figure  

 
Figure 7: Process of seismic correlation with well log data. 

Computation of initial impedance model is the next step of 
the inversion. This initial impedance model is built by 
interpolating the acoustic impedance from the well 
locations into the in-lines and cross-lines. Two interpreted 
seismic horizons are introduced as guide for the 
interpolation. To construct the impedance model a 12-Hz  

low-pass filter is applied to the model for two reasons. 
First, the low frequency impedance trend is required in 
order to recover the low frequencies which are missing 
from the stacked seismic data. The second is the 
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impedances above ~12-Hz frequencies should be only 
obtained from seismic data, and therefore this frequency 
band should be removed from the well-log data while 
building the starting impedance model [2]. 

Next, step is to apply model-based, colored, sparse-spike 
and band-limited impedance inversion to the real seismic 
data from the Blackfoot seismic data. This is performed in 
two steps. First, one composite seismic trace is extracted 
from seismic data and inverted into impedance. Correlation 
coefficient (CC) and RMS Errors are estimated. Secondly, If 

CC and RMS Error are in acceptable range then applied 
these inversion methods to entire seismic data to invert into 
impedance and density. 

The inversion result at the well location is compared to the 
original log at well 01-17 are shown in Figure 8. In figure, 
the red trace shows inverted impedance from the seismic 
trace, the blue trace shows impedance from well log data 
and the black trace shows initial guess model.   

 

Figure 8: Comparison of Inverted impedance with real impedance from well log data. a) Shows inversion using MBI, b) CI, c) 
LPSSI, d) MLSSI and e) BLI methods. 

Synthetic traces is generated and correlated with the 
seismic traces for all wells and the differences between 
them are measured. The match between the synthetic and 
seismic trace showed good correlations (Figure 9) for most 
wells. The correlation coefficients are varies from 0.80 to 
0.99.  

Figure 10 shows comparison of relative error with all 
boreholes for all inversion methods.  The figure shows that 
the relative error of MLSSI is largest and LPSSI is smallest. 
The root mean square (RMS) errors are also estimated and 
it is vary from 500 (m/s)*(g/cc) to 1250 (m/s)*(g/cc). 

 
Figure 9: Comparison of correlation coefficient for all 
inversion methods. 
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Figure 10: Comparison of Relative Error for all inversion 
methods. 

 
Figure 11: Comparison of RMS Error for all inversion 
methods. 

The average error is 778.6(m/s)*(g/cc). Figure 11 shows 
comparison of RMS Error for all inversion methods. 

A cross section of the inversion result is given in Figure 12. 
Entire seismic section is inverted into impedance, and 
shown in this figure for all inversion methods used in this 
study.  Figure 12a is cross-section of inverted impedance 
using MBI approach. Figure 12b, 12c, 12d and 12e are cross-
section of inverted impedance estimated using CI, LPSSI, 
MLSSI and BLI approach respectively. A low impedances 
near 1060ms level are clearly visible and highlighted by the 
rectangle. The low impedance zone is extends nearly 
1065ms. This low impedance is may be due to presence of 
sand channel in this zone. The low impedance zone is seen 
in all inverted results as it can be seen in figure 12. 

 

Figure 12: Cross-section of inverted impedance using a) 
MBI, b) CI, c) LPSSI, d) MLSSI and e) BLI algorithms. 

A cross section of the inverted density is given in Figure 13.  
Figure 13a is cross-section of inverted density using MBI 
approach. Figure 13b, 13c, 13d and 13e are cross-section of 
inverted density estimated using CI, LPSSI, MLSSI and BLI 
approach respectively. A low density near 1060ms level are 
clearly visible and highlighted by the rectangle. The low 
density zone is extends nearly 1065ms. This low density 
zone is may be due to presence of sand channel as it is also 
seen in impedance section. The low density zone is seen in 
all inverted results as it can be seen in figure 13. 

4.2 Geostatistical Methods 

In this section results for the estimation of porosity using 
seismic attributes are discussed. The prediction is carried 
out using neural network algorithms. The analysis data is 
consist of thirteen wells with measured porosity logs, along  
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Figure 13: Cross-section of inverted density using a) MBI, 
b) CI, c) LPSSI, d) MLSSI and e) BLI algorithms. 

with the seismic volume and inverted results from the 
colored, model based and sparse spike inversion methods. 

Figures 11a, 11b and 11c show the cross-plot between the 
predicted porosity and the actual porosity for the colored, 
the model-based and the sparse spike inversion methods 
respectively and using probabilistic neural network (PNN) 
technique as a prediction tool. The y-axis shows predicted 
density porosity whereas x-axis shows actual porosity from 
well log data. 

The red line is not a regression line in the figures 11a, 11b 
and 11c but a line with zero intercept and slope 1 which is 
indicating perfect correlation between predicted and actual 
attributes. The actual correlation and error are printed  at 
the top , and we can see that  the correlation coefficients are 
0.81, 0.84 and 0.86 for colored, model based and sparse 
spike inversion case. The errors are as 3.3306 for colored 
inversion, 3.408 for model based and 3.271 for sparse spike 
inversion case. 

 
Figure 14: Cross-section of inverted impedance using a) 
MBI, b) CI, c) LPSSI, d) MLSSI and e) BLI algorithms. 

 
Figure 15: Cross-section of inverted impedance using a) 
MBI, b) CI, c) LPSSI, d) MLSSI and e) BLI algorithms. 

 
Figure 16: Cross-section of inverted impedance using a) 
MBI, b) CI, c) LPSSI, d) MLSSI and e) BLI algorithms. 

The variation of the predicted porosities when using 
colored inversion, model based and sparse spike inverted 
results as external attributes are plotted in Figures 17a, 17b 
and 17c (shown only xline 41), respectively. The predicted 
porosity isshown from time 1000ms to 1100ms (only zone 
of interest). The high porosity zones are interpreted as sand 
channels (Reservoir).  
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Figure 17: Predicted Porosity using a) CI, b) MBI and c) 

LPSSI as external attributes.  

Using the PNN approach and colored, model based and 
sparse spike inverted results as external attributes, A high 
porosity values are estimated, which is located between 
1060ms and 1065ms time interval. The maximum porosity 
is computed in the sand channel is 16% in the case of 
colored inversion, 18% for model based inversion and it is 
32% for sparse spike inversion. 

5 DISCUSSIONS 

The first group of methods applied to the data is the post-
stack acoustic impedance inversion. Four algorithms are 
used, as described in methodology section. All seismic 
inversion (model-based, colored, sparse spike and band-
limited inversions) results are closely related.  These 
algorithms are tested at the well locations to compare the 
acoustic impedance inversion inverted results to the log 
impedance. These seismic inversion techniques estimate 
similar results, and the tests show reasonable correlation 
coefficient (0.80-0.99) and RMS average variations, which 
ranged from 500 (m/s)*(g/cc) to 1300 (m/s)*(g/cc).  

The low-impedance zone located between 1060 to 1065ms 
time levels corresponding to the reservoir. This low 
impedance zone between 1060ms and 1065ms is also 
estimated by [15]. The low acoustic impedance varied from 
6800 to 8000 (m/s)*(g/cc). The algorithms of the post-stack 
inversion give similar results, except that in the sparsespike 
method, where the image appeared is to be more spatially 
coherent. 

Table 1 shows a comparison of results in the reservoir zone 
between 1060 and 1065ms obtained from all inversion 
methods.  Column 1 (Table 1) is the estimated properties 
for reservoir zone; column 2 to 6 is the inversion type used 
in the present study. The table shows that the impedance 
(6000-6600m/s*g/cc) and density variations (1.8-2.02g/cc) in 
the reservoir zone are smallest for linear programming 
sparse spike inversion (LPSSI). The correlation coefficient 
(0.99) is highest and RMS error (778.36) is least for model-
based inversion indicating that the inverted results are 
most accurately represented subsurface.  The cross-
correlation (0.86) and predicted porosity (32%) is highest 
for linear programming sparse spike inversion method 
when Probabilistic neural network used as prediction tools. 
This indicates that the linear programming inversion 
technique is more accurate compared to other techniques 
for prediction of petrophysical parameters for Blackfoot 
seismic data. 

Table 1:Quantitative comparison of all methods. 

Properties MBI CI SSI BLI 
LP ML 

Impedance (*103) 6.2-7 7-7.5 6-6.6 7.9-8 7-8 
Density (g/cc) 1.9-

2.4 
1.9-
2.5 

1.8-2 1.9-2 1.8-2 

Correlation 0.98 0.89 0.97 0.95 0.92 
RMS Error 
(g/cc*m/s) 

778 1029 888 878 963 

Relative Error 0.665 0.923 0.206 0.302 0.878 
Probabilistic Neural Network 

Cross 
Correlation 

.84 0.81 0.87   

Average Error 3.408 3.661 3.271   
Porosity 18% 16% 32%   

6 CONCLUSIONS 

In this study the Blackfoot 3D seismic datasets is used for 
comparative analysis of several types of post-stack 
inversion techniques. Extracted a variety of seismic 
attributes like impedance, density and porosity using these 
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inversion techniques. The final stacked sections shows good 
images within the time-depth ranges of 300 to 1300ms, 
where the target Glauconitic channel is located. From the 
study it is concluded that: 

1. The results shows that model-based, colored, sparse 
spike and band-limited inversion methods give good 
and mutually consistent results, with low-impedance 
zones corresponding to the target hydrocarbon sand 
within the channel.  

2. Probabilistic neural network was utilized to predict 
the porosity values in this study. Probabilistic neural 
network show that LPSSI, when used as an external 
attribute, is more accurate and produces high-
resolution images compared to those estimated with 
the use of MBI and CI as an attribute. From the 
analyses, the predicted logs showed correlation of 
0.81, 0.84 and 0.86 for inversions (CI, MBI and LPSSI) 
using neural network algorithm as a prediction tool 
for inversion.  

3. The generated porosity cubes show similar high 
porosity values that correlate well with the low 
impedance zone.  

In an overall conclusion, post-stack inversion produced the 
best results suitable for provisional targeting gas well. Since 
this method clearly confirms thereservoir in the channel 
area.  The maximum porosity in the sand channel is 18% 
when MBI is used as an external attribute; it is 16% in the 
case of CI and become   32% when LPSSI is used as external 
attributes. The results suggest that given seismic and well 
log data for a region, a combination of linear programming 
sparse spike inversion and PNN can produce a more 
reliable estimate of the petrophysical properties of the 
subsurface for the Blackfoot seismic data. 
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